Optofluidic refractometer using resonant optical tunneling effect.

نویسندگان

  • A Q Jian
  • X M Zhang
  • W M Zhu
  • M Yu
چکیده

This paper presents the design and analysis of a liquid refractive index sensor that utilizes a unique physical mechanism of resonant optical tunneling effect (ROTE). The sensor consists of two hemicylindrical prisms, two air gaps, and a microfluidic channel. All parts can be microfabricated using an optical resin NOA81. Theoretical study shows that this ROTE sensor has extremely sharp transmission peak and achieves a sensitivity of 760 nm∕refractive index unit (RIU) and a detectivity of 85 000 RIU(-1). Although the sensitivity is smaller than that of a typical surface plasmon resonance (SPR) sensor (3200 nm∕RIU) and is comparable to a 95% reflectivity Fabry-Pérot (FP) etalon (440 nm∕RIU), the detectivity is 17 000 times larger than that of the SPR sensor and 85 times larger than that of the FP etalon. Such ROTE sensor could potentially achieve an ultrahigh sensitivity of 10(-9) RIU, two orders higher than the best results of current methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection.

We have developed a planar, optofluidic Mach-Zehnder interferometer for the label-free detection of liquid samples. In contrast to most on-chip interferometers which require complex fabrication, our design was realized via a simple, single-layer soft lithography fabrication process. In addition, a single-wavelength laser source and a silicon photodetector were the only optical equipment used fo...

متن کامل

Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization.

Miniaturization of functional devices and systems demands new design and fabrication approaches for lab-on-a-chip application and optical integrative systems. By using a direct laser writing (DLW) technique based on two-photon polymerization (TPP), a highly integrative optofluidic refractometer is fabricated and demonstrated based on tubular optical microcavities coupled with waveguides. Such t...

متن کامل

Optofluidic Fabry-Pérot Micro-Cavities Comprising Curved Surfaces for Homogeneous Liquid Refractometry - Design, Simulation, and Experimental Performance Assessment

In the scope of miniaturized optical sensors for liquid refractometry, this work details the design, numerical simulation, and experimental characterization of a Fabry-Pérot resonator consisting of two deeply-etched silicon cylindrical mirrors with a micro-tube in between holding the liquid analyte under study. The curved surfaces of the tube and the cylindrical mirrors provide three-dimensiona...

متن کامل

The Effect of Structural Parameters on the Electronic States and Oscillator Strength of a Resonant Tunneling Quantum Well Infrared Photodetector

In this paper a resonant tunnelling quantum well infrared photodetector (RT-QWIP) is discussed. Each period of this photodetector structure comprises of a resonant tunnelling structure (AlAs/AlGaAs/AlAs) nearby a quantum well (AlGaAs/GaAs). In this photodetector, photocurrent is produced when an electron makes a transition from the ground state of the well to an excited state which is coupled t...

متن کامل

A thiol-ene/methacrylate-based polymer for creating integrated optofluidic devices

We present a thiol-ene/methacrylate-based polymer capable of creating both physical fluidic features and optical index features via a series of three UV mask-lithography steps. The process of creating the two types of features are addressed independently by control of the polymerization and diffusion rates within the polymer system. The rapidly curing methacrylate creates a gelled, rubbery scaf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomicrofluidics

دوره 4 4  شماره 

صفحات  -

تاریخ انتشار 2010